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Abstract

A statistical model for investigating predictive

validity at highly selective institutions is described.

When the selection ratio is small, one must typically deal

with a data set containing relatively large amounts of

missing data on both the criterion and predictor variables.

Standard statistical approaches are based on the strong

assumption that the missing data are missing at random

(MAR), i.e., the missing data can be accounted for in terms

of the observed measures, and there are no unmeasured

variables which underlie the missing data process. It is

well known that violations in this assumption can yield

biased estimates especially when there is a high proportion

of missing data. The proposed model represents an attempt

to account for any unmeasured selection variables by

assuming that applicants are first placed into admission

categories by the institution and then selected within each

category in terms of the observed predictor variables.

Thus, although the MAR assumption may not hold for the set

of all applicants, it may very well hold within each

admission category. The model uses the EM algorithm to

obtain estimates of validity separately within each

category. The model is suite general and can be used when

there are missing data on the predictor and criterion

variables, and even if the admission category is not known

for each applicant. The proposed model is illustrated in

terms of a real life data set.
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INTRODUCTION

The problem of investigating the validity of a

selection procedure is particularly difficult for highly

selective institutions due to the relatively large amount of

missing data that typically occurs in this setting. Our

original interest in this problem arose because of the need

to investigate the validity of a real life admissions

program at an educational institution which admits less than

10 percent of their applicants. The basic problem is one of

investigating the statistical relationship of a set of

predictor variables (xl, x2, ..., xp) to some criterion

variable y when complete data cannot be obtained. It should

be noted that in the most general case, data will be missing

for both the y and x variables. The parameters to be

estimated may include the squared multiple correlation in

predicting y from the x's, the regression weights, various

squared semi-partial correlations showing the "importance"

of various x variables in predicting y, and the difference

in the expected y score of individuals selected usilig tie

x's and those who would have been selected by a lottery.

This last parameter is especially relevant for highly

selective institutions where it is often argued that the

applicants are a self-selected group; thus a randomly chosen

group of these applicants will perform at a comparable level

to a group selected on the basis of test scores.
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How can the observed data be used to estimate the

parameters of interest? The answer to this question depends

upon what assumptions can be made concerning the selection

process which produced the missing data. Whereas these

assumptions may have a minor effect on the analysis when the

proportion of missing data is small, these assumptions must

be carefully considered when there are relatively large

amounts of missing data. The simplest (although often not

realistic) assumption is that the missing data can be

explained in terms of the observed predictor variables. For

example, suppose only subjects who score highest on x1 (an

aptitude test) are
observed on x2 (a -tructured interview),

and only those subjects scoring highest on x2 ate observed

on y. In this example, x2 is missing as a function of x1,

and y is missing as a function of x2. When the missing data

can be explained simply in terms of the observed predictor

variables, the missing data can be described as missing at

random (MAR), Little & Rubin (1987). Standard methods of

estimation can be applied given the MAR assumption. For

example, Little & Rubin (1987), Rubin (1976) have shown that

maximum likelihood
estimates can be obtained by simply

considering the likelihood for the observed data. It should

be noted, that the standard correlation corrected for

"restriction in range," is the maximum likelihood estimate

of the population correlation when there is a single x

variable and y is MAR (Cohen, 1955) Unfortunately, in many

cases the observed predictor variables alone will not
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explain the missing data, implying that additional

unmeasured variables are operating. If these unaccounted

for variables are statistically related to the missing data,

given the observed data, the MAR assumption will not hold,

and the estimation procedure can become quite complex since

one must introduce a statistical model for the unmeasured

variables. Failure to account for the unmeasured variables

will in general lead to biased results (Heckman, 1976, 1979;

Linn, 1968; Olson & Becker, 1933). In our study of the real

life data set previously
described, we were confronted with

just such a problem; a simple inspection of the applicant x

scores suggested that the missing data could not be

accounted for simply in terms of the observed predictor

variables. Many instances were found where non-accepted

applicants had higher scores on the observed predictor

variables than accepted applicants. Thus, the missing data

could not be assumed to be MAR. However, a careful analysis

of the problem showed that the unmeasured selection

variables could be accounted for by considering a set of

admission categories used by the institution.
Based on a

set of measured "background variables," applicants were

first classified by the institution into one of three

admission categories. The use of these categories basically

represented a policy decision by the institution. For each

category, selection was then based on the x variables.

Thus, although the MAR assumption does not hold for the data

set as a whole, the assumption is tenable within each
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category. Given this structure where applicants are first

grouped into categories and then selected in terms of the x

variables, one can use the observed data to estimate the

validity of the selection process separately within each

admission category. This strategy was adopted as a model

for investigating the validity of the admissions procedure.

The proposed model is quite general and can be employed when

there are missing values on both the x and y variables, and

in addition, even if the admission category membership is

unknown for some applicants.

In section 2, the general statistical model is

described together with the methods for estimating the

validity of the predictor variables within each admission

category. In section 3 the application of the model to the

previously mentioned data set is described. Although we

illustrate the usefulness of the proposed model in terms of

a single real life data set, we believe that the model can

be applied in validation studies at other highly selective

institutions. The model is also not limited to educational

settings, but could be used in industrial selection programs

where different admission standards are used for different

well defined applicant groups. In this third section we

also deal with the problem of accounting for the missing y

scores of admitted applicants who decline the admissions

offer or who drop out prior to the measurement of y. For

these cases, the missing data may be a function of

unmeasured variables which are statistically related to y.
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Thus, these missing y scores cannot always be assumed to be

MAR. We deal with this issue by performing a sensitivity

analysis where different possible values are imputed for the

missing scores, and the changes in the final analysis are

noted. The last section contains our
conclusions and a

discussion of future research needs.

2. Statistical Model

We assume that the applicants are
grouped into a set of

g > 1 admission categories. Within each
category, the p x

variables and the y variable are assumed to be multivariate

normal with mean vector gj and variance covariance matrix

Ej, j = 1,2,...g. In the ideal case where there are no

missing data, one can choose between two different methods

for estimating the unknown parameters.
First, if one

assumes that the Ej matrices vary over the categories, the

data from each admission category would be separately

analyzed. For example, g separate multiple correlations

would be computed.
Second, if one assumes homogeneity for

the Ej matrices, a single pooled sample variance covariance

matrix is computed. In this case a single multiple

correlation would be obtained. Assuming reasonably large

sample sizes within each category, the choice between these

two options would be based on some common homogeneity of

variance-covariance
test.

8
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Consider the case of missing data.,. category

membership is known for all appliLants, but there are

missing data on the x and y variables (assumed to be MAR

within a category), the two options described above will be

available as long as there are enough complete cases within

each category to assure that the individual Ej matrices can

be estimated. The choice between the two models (common E

versus separate Ej) can be male using an appropriate

statistical test. Due to the missing data, the commonly

used homogeneity tests cannot be applied. However, one

could test the null hypothesis of equal Ej using a log-

likelihood ratio test. (Mood, Graybill, & Boss, 1974).

Given that missing data are present, the general method

used to obtain estimates in both the homogeneous and

heterogeneous Ej models is the so called EM algorithm

(Little & Rubin, 1987). The procedure can be described in

general using a type of "what if" reasoning. If there were

complete data, one would compute the usual statistics for

estimating the parameters of interest. For example, one

would compute the mean of the x and y variables within each

category as well as the category variance covariance matrix

or the pooled variance covariance matrix. These statistics

would represent the maximum likelihood estimates. In the

presence of missing data, one estimates these statistics by

computing their expected values, given the observed data,

and some initial set of parameter estimates. These expected

values are then used as a new set of parameter estimates,
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and the expectation step is again applied. The procedure is

continued until convergence is reached. The final expected

values are the maximum likelihood estimates. We know of two

computer programs for performing this analysis; BMDP-AM

(1990) for the unequal Ej case, and a FORTRAN program

obtained from M.D. Schlucter (personal communication, 1990)

for the equal Ej case. It should be noted that the latter

program can also be used in the most complex case where data

are missing for category membership, as well as for the x

and y variables. In other words, not only are some subjects

missing scores on x and y, but the category membership may

not be known for all applicants. In this case, parameter

estimation is possible only if the common E model is

assumed. The EM estimation theory for this case is more

complex and is described in detail in Little & Rubin (1987).

To further illustrate the estimation procedure,

consider the following simple data set consisting of g=2

admission categories, two x variables (x1, x2) and y.

Suppose there are nl = 6 applicants in category 1 and n2 = 8

applicants in category 2. The observed and missing data

(denoted as u?") are given as follows:

10
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Category 1

xl x2 y

Category 2

xl x2 y

5 ? 9 8 7 9

3 4 7 8 9 6

2 3 5 7 6 8

4 5 ? 5 5 ?

? 4 ? 4 6 ?

? 3 7 3 2 ?

3 ?

2 ? ?

The missing data pattern in category 2 is said to be

monotonic or nested since there is an ordering of the

variables in terms of "observability." The x1 variable is

most observed, followed by x2, and then y which is the least

observed. The data, in category 1 does not exhibit a

monotonic pattern.

Let us assume that the 3 by 3 variance covariance

matrix of the x's and y's is the same for both categories.

(The algorithm follows the same logic for the unequal Ej

case). The problem is to estimate the means for the

variables for each category (Alj, A2j, Ayj, j = 1,2) and the

common 3 by 3 variance covariance matrix, E. Given

estimates of these basic parameters, one can readily

estimate additional parameters. For example, since the

multiple correlation can be computed from the variance
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covariance matrix, given an estimate of the latter, we can

estimate the former. In addition, given an estimate for E,

one can readily obtain the maximum likelihood estimates for

the regression weights in predicting y from x1 and x2.

If the data were complete, the maximum likelihood

estimates would be obtained by first computing the following

sums and sums of squares and cross products for the data in

category j, j=1,2:

Exij, Ex2j, Eyj,

Ex21j, Ex22j, Ey2j,

E(xij)(Yj), E(x2j)(1rj), E(xij)(x2j)

The traditional maximum likelihood estimates are then

obtained by computing the means from the sums, and

transforming the sums of squares and cross products into

variances and covariances.

When missing data are present, these statistics are

iteratively estimated by the EN algorithm. Consider as an

example the estimation of the sum of the y's in category 1.

Suppose initial estimates of the unknown parameters (j1, A2,

and E) are obtained from the complete data. For example,

the mean of y in category 1 is initially estimated to be

28/4 = 7. To estimate the sum of y in category 1, the

missing y scores of cases 4 and 5 are estimated. These
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estimates are the expected values given the observed data

and the initial estimates. For subject 4, y is estimated

from the regression equation
predicting y from x1 and x2.

These regression weights are in turn obtained from the

initial estimate for E. Similarly, for subject 5, y is

estimated from the regression equation
predicting y from 17:2.

Similar computations are followed to estimate all of the

sums and sums of squares of cross products. For example to

estimate the sum of squares of y in category 1 (Ey2 1) the

missing values for y42 and y52 are replaced with their

expected values. In this case the estimates are given by

the sum of e squared predicted value and a residual

variance. Once all of the expected values are computed, the

usual maximum likelihood estimates are computed and used as

new parameter estimates. The expectation
step is then

performed again. The process continues until the estimates

converge. As previously noted, computer programs are

available for performing this analysis.

It should be noted that in category 2 where the missing

data pattern is monotonic, the maximum likelihood estimates

can be obtained in a simple non-iterative manner without

using the EM algorithm. The estimates of the mean and

variance of xl can be directly computed since there are no

missing values for this variable. Secondly, two regression

equations and associated residual variances can be computed

predicting x2 from x1, and y from xl and x2. The latter two

analyses are performed .Asing the complete x1,x2 and the

13
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complete x1,x2,y data sets respectively. The computed

statistics all provide maximum likelihood estimates under

the MAR assumption. Using these estimates, one can readily

compute the maximum likelihood
estimates of any other

parameters which are expressible in terms of the originally

estimated parameters. For example, the estimate of the mean

of x2 can be obtained by evaluating the regression equation

predicting x2 from x1 at the estimated mean for x1.

Similarly, the formula for the population multiple

correlation of y with xl and x2 can be expressed as a

function of the variance of xl and the regression weights

and residual variances for predicting x2 from x1 and y from

x1 and x2. Replacing these regression weights and variances

by their estimates yields the maximum likelihood estimate of

the multiple correlation. The basis for these simplified

non-iterative analyses when the missing data pattern is

monotonic is explained in Little & Rubin (1987). It is

interesting to note that if this logic is applied in

estimating the xy correlation for the very special monotonic

pattern which arises when there is only a single x variable

measured on all applicants but there are missing data on y,

the resulting estimate is the common restriction in range

correction formula. In general, one can estimate the xy

correlation when there are missing data on both x and y (a

non-monotonic pattern).
Further, one can estimate the

multiple correlation in the case where there are several x

variables, and the missing data for the x's and y are not

14
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monotonic. In these last two examples, the iterative EM

algorithm provides the general met,od for obtaining the

estimates. Simple formulas suct as the correction formula

do not exist in these cases.

3. Application to Real Data

The model described above was applied in an

investigation of the predictive validity of the selection

process at a prestigious Northeastern secondary school where

admission is based on the performance of applicants on a

three part examination consisting of Mathematics, English,

and Essay sections. Each of the applicants to the

institution is first categorized into one of three admission

categories based on background variables which include SES

factors and educational history. Within each of these

categories, the selection procedure involves two steps.

First, applicant examinations are scored on both the

Mathematics and English sections and those students whose

scores fall below a determined cutoff are eliminated. The

essay of the remaining applicants are then read and scored

and those applicants receiving a passing score on the Essay

are invited to attend the school. It should be noted that

different cutoff scores are used within each admission

category. The criterion or y variable (second year grade

point average, GPA) is measured for nearly all invited

applicants. Less than ten percent of the invited applicants

15
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decline the offer or leave the school prior to the

measurement of GPA. In summary, within each admission

category there are no missing data values for the

Mathematics and English examinations,
and the missing data

pattern for the Essay and GPA variables is monotonic.

As noted above, the GPA variable is measured on over 90

percent of the cases who survived the second stage of

selection. More specifically,
there were missing GPA scores

for a total of 18 individuals who were offered admission but

declined or dropped out prior to the time that GPA was

recorded. If it were not for these 18 cases, it is clear

that the missing data within each of the three admission

categories could be assumed to be MAR (Essay scor,as are

missing as a function of Mathematics and English scores; GPA

is missing as a function of Mathematics,
English, and Essay

scores). In the analyses to be described below, we will in

fact treat these 18 cases as if they were MAR, i.e, as if

they were simply not admitted on the basis of the three

predictor variables. The possible bias introduced by this

assumption will be later investigated by performing a

sensitivity analysis
where a range of values for the 18 y

scores are imputed and the parameter estimates recomputed

The observed characteristics
of the applicants (means,

standard deviations, group sizes) for the 1988-1989 academic

year are shown in Table 1. The descriptive
statistics are

reported separately for each admission category.

16
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INSERT TABLE 1 ABOUT HERE

It is seen in Table 1 that every one of the 44

applicants in category 1 is accepted. The only missing data

occur on the GPA variable for a single student who declined

admission. It should be noted that even though all category

1 applicants were accepted for the 1988-1989 school year, it

was still of interest to consider the predictive validity of

the admissions tests since in subsequent years it is quite

possible that the selection ratio for category 1 may be less

than 1.00 In category 2, there were 1845 applicants of whom

only 365 survived the first selection stage and were

measured on the Essay, and from this latter group, only 151

were offered admission. Of these 151 cases, 140 entered the

school and were measured on GPA. In category 3 where there

were 594 applicants, 65 survived the first selection stage

and were measured on the Essay, and finally 40 were offered

admission. Of this latter group, only 34 were eventually

measured on y. Summarizing across the three admission

categories,
Mathematics and Essay scores were measured on

all 2483 applicants; Essay scores were measured on 474

members of this group; and GPA was measured for the 217

accepted applicants who entered and remained in the school.

In Table 2 the characteristics
of the applicants who

were admitted and observed on the GPA variable are

17
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presented. Thus, for all of the applicants described in

Table 2, there are complete data for all variables.

INSERT TABLE 2 ABOUT HERE

An inspection of the means in Table 2 for the entrance

examinations shows that different admission standards were

employed for each category. It appears that the standards

were most stringent for category 2, and least stringent for

category 1. It should further be noted that the multiple

correlations
presented in Table 2 are most certainly

negatively biased estimates except for category 1 where

there basically are no missing data. The basis for this

conclusion is the well known result, that by restricting the

range of the predictor variable, the associated correlation

is attenuated.

Table 3 contains the maximum likelihood
estimates of

the following parameters:
(a) the means for the Mathematics,

English, Essay, and GPA variables, (b) the multiple

correlations in predicting GPA from the three predictors,

and (c) the difference in the expected GPA of applicants

admitted by a lottery and those admitted on the basis of the

predictor variables. This latter parameter is referred to

as the "expected gain from selection (EGS)." In addition,

the associated standard errors of the estimates are

18



www.manaraa.com

Investigating
Validity at Highly Selective Institutions

18

presented. It should be noted that the parameters (means

and multiple correlations)
that are estimated in Table 3

apply to the entire applicant pool. For example. the

estimate for the mean Essay score, is an estimate of what

the average Essay score within a given category would have

been if all applicants were admitted. Except for category 1

(where nearly all applicants are accepted), the means in

Table 3 are uniformly lower than those in Table 2 where only

admitted applicants are considered.

INSERT TABLE 3 ABOUT HERE

The EGS parameter presented in Table 3 is defined in

the following manner. If applicants within category j =

1,2,3 were
selected by a lottery, the expected value of

their average GPA would simply be the overall
applicant mean

or expected value for GPA, E(GPAj). This expected value can

be obtained by evaluating the regression equation predicting

GPA from the three predictor variables (labeled for

convenience as 1,2,3) at the mean value for the predictors,

i.e.,

E(GPAj) = Boj + filiAli + 82jA2i + 83943i. (1)

where Ali, A2i1 A3i are the means for the Mathematics,

English, and Essay examinations
for the population of

applicants in category j. Estimates of these means are

obtained from Table 3. Similarly, the expected GPA for

19
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selected applicants [E(GPAJIS)) is obtained by evaluating

the category regression equation at the mean predictor

scores of selected applicants:

E(GPAJIS) = Boj + BijE(xijIS) + (2)

132jEx2j1S) B3jE(x3jIS),

where E(xijIS) is the expected value of predictor i for the

selected cases in category j. Estimates of these expected

values can be obtained from Table 2.

The EGS parameter is then the difference in the

expected values given in equations (1) and (2).

EGSj = Bijdij + B2jd2j + B3jd3j (3)

where dij = Aij - E(xijIS) is the difference in category j

between the mean applicant score and the mean accepted

applicant score for predictor i. Setting the values of the

dij parameters to be the observed applicant-admitted

differences (obtained from Tables 1 and 2), and replacing

the population regression weights by their maximum

likelihood estimates, -me obtains an estimate of EGSj,

j=1,2,3. Since virtually all applicants in category 1 were

admitted, the EGS parameter was estimated only for

categories 2 and 3.

Two major conclusions can be drawn from the estimates

in Table 3. First, the predictor variables are clearly

statistically valid predictors of GPA for categories one and

three. This result can be seen by testing the R2 values for

20
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significance using a simple z test, where z = R2 /( standard

error of R2 ). The observed R2 values of .34 and .40 each

yield significant (p < .05) z values. Further evidence for

predictive validity in the third category is the finding

that the expected gain from selection is sigificantly

different from zero ( z = 7.34/2.98 = 2.46, p < .05).

Second, although the results in Table 3 for the second

admission category fail to reach statistical significance,

they strongly suggest that the admissions variables are also

valid for this category. A z test of the estimated R2 value

in category two, (z = .14/.09 = 1.56) is nearly significant

(p < .06). Similarly, the estimated EGS value (1.90) for

category three also approaches signifcance (z = 1.90/1.39 =

1.37, p < .08). These findings may very well be

attributable to low levels of statistical power for the

signifcance tests of the R2 and EGS parameters. This issue

is discussed more fully in the following section.

It is also of interest to consider the size of the

standard errors and the associated confidence intervals for

the estimates presented in Table 3. Although there is

evidence for the predictive validity of the predictors in

all three categories, the multiple correlation and EGS

parameters cannot be precisely estimated. For example, the

.95 confidence intervals for the squared multiple

correlations in categories 1 and 3 are [.09, .59] and [.01,

.79] respectively. Similarly, the .95 interval for the EGS

in category 3 is [1.50, 13.18]. The width of the confidence

21



www.manaraa.com



www.manaraa.com

Investigating Validity at Highly Selective Institutions 22

null hypothesis of a common E matrix was tested by computing

a chi square log-likelihood ratio test with 42-22=20 degrees

of freedom. This statistic was computed by taking the log

of the ratio of the likelihood of the data given the two

sets of estimates. The resulting chi square was highly

significant leading to the rejection of the equal Ej model.

Consider the second assumption that all of the missing

GPA scores are MAR. As previously noted, this assumption is

tenable for all but the 18 applicants who although offered

admission, either declined or left the school prior to the

time that the GPA variable was measured. To investigate the

possible effect of violations in the MAR assumption, a

sensitivity analysis was performed where different values

were imputed for these missing scores and the parameter

values reestimated. When the MAR assumption holds, the

regression equations predicting GPA (obtained from the

complete data of the admitted applicants within each

category) will provide unbiased estimates of the GPA scores

of the 18 missing cases. However, when the MAR assumption

does not hold, i.e. when these GPA scores are not missing

simply as a function of the predictor variables, the

previous equations will yield biased predictions (Gross,

1987). To allow for the possibility that these 18 scores

are not MAR, we imputed the missing values using the

category regression equation together with an adjustment

factor. More specifically, given an applicant from category

j, with predictor scores xi, x2 x3, the predicted GPA was

23
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obtained using the complete case regression equation. This

predicted value was then modified by adding an adjustment

factor. This factor was either positive or negative one

residual standard deviation unit. In other words, the 18

missing values were estimated to be either systematically

higher or lower than their predicted values. The squared

multiple correlations and the EGS estimates for the three

categories were then recomputed using the data set which

included the imputed values. The results of these

computations presented in Table 4 suggest that the analysis

is fairly robust with respect to the assumption that the 18

missing GPA scores are MAR. The estimates of the squared

multiple correlations and EGS values are substantially

unchanged when different values (one residual standard

deviation unit above and below the predicted value) are

imputed for these missing scores. For example, in category

3, the squared multiple correlation varies from the original

maximum likelihood estimate of .40 by no more than .05 units

under the two imputations. Similarly, the EGS values are

changed by less than one point.

4. Conclusions

In analyzing any data set which contains missing data

one must introduce assumptions concerning the missing data

process to obtain statistically accurate estimates of the

underlying parameters. The sensitivity of the analysis to
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these assumptions is clearly a function of the proportion of

missing data. Violations of the underlying assumptions may

be only a minor problem when there are relatively little

missing data, but can lead to highly biased estimates when

the proportion of missing data is high. In investigating

the predictive validity of a test battery for a highly

selective institution, there will be by definition large

amounts of missing data. The key assumption in this type of

analysis is that the missing data can be accounted for in

terms of the observed and measured variables, i.e., the

missing data are missing at random. The proposed model

represents an attempt to assure that this assumption will be

satisfied by measuring not only the predictor variables, but

also noting the admission category of the applicant. While

the predictors alone cannot always account for the missing

data, the measurement of the predictor variables together

with the admission category may very well yield a data set

where the missing data are missing at random.

Although the proposed model is quite general and can be

employed when there are missing data on the predictors,

criterion and the admission category, the model is still

potentially limited in two ways. As previously noted, the

missing criterion scores of those applicants who decline an

admissions offer or soon drop out, may not be MAR. In other

words, there may be additional variables (statistically

related to the criterion) which are responsible for these

missing scores. For this problem, we have suggested that
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the investigator perform a sensitivity analysis where a

range of reasonable values for these missing criterion

scores are imputed and the parameters reestimated. For the

data set considered in the present paper, the sensitivity

analysis suggested that the model was robust with respect to

the assumption that the missing criterion scores of admitted

applicants wer. MAR.

The second limitation of the proposed model is that

although it yields unbiased estimates of the relevant

parameters, both the precision of these estimates as well as

the power of any significance tests based on these estimates

may not be high due to the large amount of missing data as

well as the form of the missing data patterns. The problem

of precision was noted in terms of the rather wide

confidence intervals obtained for the squared multiple

correlations and the EGS parameter. The issue of low power

is most clearly seen in the result for the second admission

category where the results only approached significance. It

can be argued that this finding is attributable to low

levels of statistical power. More specifically, for the

second admission category, complete data could be observed

for only 140 of 1845 applicants. Further, within this

complete case group, there was considerable restriction in

the range of the predictor variables. The ratios of the

standard deviations of each predictor variable in the

selected group to the corresponding standard deviation for

the applicant group were .52, .67, and .70 for the
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Mathematics, English, and Essay examinations respectively.

Although the complete sample size of 140 is not small, the

high levels of range restriction within this sample can

easily result in low power.

The problems of wide confidence intervals and low power

in testing hypotheses are most likely to occur when the

heterogeneous Ej model is employed. In this case, the

parameter estimates are obtained using only the data from a

single admission category at a time. It is clear hoT-aver,

that the standard errors would be much smaller if the pooled

or homogeneous Ej analysis were employed. Thus, the

proposed model should be most useful when the data are

consistent with the hypothesis of common variance covariance

matrices across the admission categories. In addition to

the choice of the heterogeneous or homogeneous Ej model, the

precision of the estimates will be a function of factors

such as the proportion of missing data, the number of

admission categories, the overall sample sizes for each

admission category, and the form of the missing data

patterns, i.e. the degree of range restricition. It would

be of practical value to provide some general guidelines in

terms of these factors for identifying the data sets where

the model can be expected to provide reasonably precise

estimates. The construction of these guidelines would

clearly be a useful area for future research.
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Table 1

Observed Characteristics of Applicants

Categ. Napplic
a

li

"
offerb Nattendc

1

2

3

Mean Mean Mean
Math English Essay

44 44 43 51.14 42.91 84.52
[13.06] [8.14] [31.29]
(44) (44) (44)

1845 151 140 39.42 37.42 91.45
[12.21] [8.08] [30.52]
(1845) (1845) (365)

594 40 34 34.27 33.85 89.37
[12.01] (7.53] [32.59]
(594) (594) (65)

Note. Standard deviations are in brackets, sample sizes are parenthesized.

aNapplic = number of applicants.

13"
L'offer = number of applicants offered admission.

c"
Ilattend = number of applicants offered admission who attended and

were measured on y.
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Table 2

Observed Characteristics of Admitted Applicantg

Categ. Mean
Math

Mean
English

Mean
Essay

Mean
GPA

R2 a

1 (N=43) 50.67 42.88 85.05 86.50 .32
[12.84) [8.25) [31.47] [4.76]

2 (N=140) 59.54 49.11 102.17 89.72 .06
[6.36] [5.41] [21.41] [4.12]

3 (N=34) 55.74 45.23 103.14 88.14 .15
[6.90] [6.92] [25.52] [4.98]

Note. Standard deviations are in brackets.

aR2 The squared multiple correlation predicting GPA from Math, English,
and Essay for applicants measured on all variables.
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Table 3

Maximum Likelihood Estimates and Standard Errors

Category Mean
Math

Mean
English

Mean
Essay

Mean
GPA

EGS a R2 b

1 51.14 42.91 84.52 86.62 .34(2.36) (1.34) (5.22) (0.75) (.13)

2 39.42 37.42 85.87 87.82 1.90 . 14(0.29) (0.19) (4.96) (1.44) (1.39) (.09)

3 34.27 33.85 58.01 80.80 7.34 .40(0.53) (0.33) (14.19) (3.16) (2.98) (.20)

Note: Standard errors are in parentheses.

aEGS The difference in the expected value of GPA between applicantsselected in terms of the x variables and those selected by a lottery.
bR2 The maximum likelihood estimate of the squared multiple correlation inpredicting GPA from Math, English, and Essay.

32
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Table 4

Sensitivity Analysis

Category

1

2

3

R
2
MAR

a

.34

.14

.40

EGSmAR b R2A c

.34

1.90 .12

7.34 .37

m2 d
B

.31

.18

.45

EGSA e EGSB

1.31 2.50

6.73 7.96

a
R
2
MAR Squared multiple correlation value assuming the "18 cases"

are MAR.

bEGSMAR Expected gain from selection assuming the "18 cases" are MAR.
cR2A Squared multiple correlation value where the 18 missing GPA's are

imputed to be one residual standard deviation unit above the
predicted value'

dR2B Squared multiple correlation value where the 18 missing GPA's are
imputed to be one residual standard deviation unit below the
predicted value'

Expected gain from selection where the 18 missing GPA's are
to be one residual standard deviation unit above the
predicted value.

Expected gain from se.,.ection where the 18 missing GPA's are
to be one residual standard deviation unit below the
predicted value.

eEGSA

fEGSB

33

imputed

imputed


